

Test Equipment Forum Neil, KC2KY

A New Project, Built and Ready to Test

It Doesn't Work . . .

What Do I Do NOW???

This doesn't help...

<u>Agenda</u>

Digital and Analog Multimeters Frequency Counters SWR / Wattmeters Your Transceiver as a Test Instrument Oscilloscopes Signal Generators

Digital and Analog Multimeters

Digital and Analog Multimeters

- Power Supply Voltage Checks
- Verify Resistor Values
- Battery Checking
- "Buzz" Out Cables
- Analog Meters Work Better for "Peaking" Things
- Many kit manuals provide voltage points for troubleshooting

Sidebar on AC Voltage Measurements

Peak-to-Peak vs. RMS

Scopes show Peak to Peak Voltage Multimeters show RMS Voltage

11.44 VAC

Why is there a Difference??

Sidebar on AC Voltage Measurements (Continued)

Power = V²/R But What do I Use for V??

*only true for sine waves

Frequency Counters

Frequency Counters

Check your TX frequency

Some kits need a frequency counter for aligning local oscillators and VFO

Very useful for aligning mixers in some receiver kits

"Ham Quality" counters are usually good to about 1 PPM

This means frequency is accurate to about 440 Hz when looking at a 440 MHz HT output

SWR and RF Power Meters

SWR and RF Power Meters

No Shack is Complete Without One

Check / Tune your Antenna

Verify Transmitter Output

Set Audio Levels in Sound Card Digital Modes

Your Transceiver as a Test Instrument

Using Your Transceiver as a Signal Source

Overall receiver functionality Frequency accuracy / stability Relative Sensitivity

Safety Considerations

- 1. You don't want too much RF floating around in the shack
- 2. You don't want to burn out the final in your transceiver
- 3. You don't want to ruin the front end of the receiver you're testing

The test setup shown here will provide safe signal levels to work with

Using Your Transceiver as a Reference Receiver

Frequency accuracy / stability Tone Purity for CW transmitters Know What the Other Guy will Hear

The Same Safety Considerations Apply As for the Signal Source Setup

- 1. You don't want too much RF floating around in the shack
- 2. You don't want to burn out the final in your kit or test radio
- 3. You don't want to ruin the front end that expensive transceiver!

Oscilloscopes

Oscilloscopes

- AC / DC Voltmeter
- Relative Power Indicator
- Frequency Measurement (Approximate)
- Distortion Analyzer

Simplified Block Diagram of an Oscilloscope

Connecting a Scope Safely to your Transmitter

Practical Scope Example Checking TX Audio Levels in PSK-31

Distorted Waveform Audio Level Set Too High Good Waveform Rounded, Symmetric Peaks Audio Level Set Correctly

Signal Generators

Signal Generators

You can find "antiques" like the one pictured in the previous slide at hamfests at low cost

Create reference signals at a "known" signal strength and frequency

You'll probably want to use a freq counter to check the frequency out of the signal generator

For most purposes, your main rig will do just as good a job or better (see "Using Your Transceiver as a Test Instrument")

Have Fun!

Your ham license allows you to do much more than just operate a radio.

You can build, operate, and maintain your own equipment (on ham bands). No other radio service allows you to do this.